Friday, January 16, 2015

Realizable Capacity - How to get the most out of what you already have.

efficiency2
Original Author: Dick Kallage
Originally posted in Digital FABRICATOR, January 2015                                                                                                                                      
In his informative article The Capacity dilemma – Why today’s churning markets require a new viewpoint about capacity Mr. Kallage outlines an effective strategy to overcome capacity issues in the slow growth, churning market we are currently experiencing. We will bring you up to speed on the main points of the article, deliver Mr. Kallage’s solution and conclude with why we believe that MultiCam CNC machines naturally support the practical lean methodologies recommended in this article.
To begin Mr. Kallage discusses the characteristics of a churning market, which he defines as ‘one in which customers are restless, demanding more on service and pricing to offset the lack of revenue growth, and are willing to churn the supply base – change suppliers – to get what they want.’ This is an important concept to keep in mind, especially when considering capacity planning decisions.
When performing capacity planning it is critical to take into consideration the state of the market. Depending on whether we are in a slow growth churning market or one with steady growth, our capacity planning decisions can have very different consequences. Generally there will be some degree of error in any forecast, so we must decide if we want to set up our capacity so that it will be slightly greater than or less than what will be required to meet actual demand.
If we choose to play it safe and plan to have excess capacity then this will detract from our profits. On the other hand if we opt for having slightly less capacity than may be required, then the time it takes to meet customer orders will increase and our customers may become upset with the longer lead times.
Mr. Kallage says that in normal times with standard growth, businesses tend to gravitate towards having too little capacity. They can pocket the up-front savings from the lower amount invested in capacity and as long as the market isn’t in that slow growth churning state then customers will generally accept the longer lead times. However, given that we are in a churning market, it is very risky to assume customers will be content with this level of service.
Mr. Kallage also emphasizes that if customers do leave to seek suppliers with shorter lead times then it will likely be the major, large order customers, as they are the ones with the most power to obtain improved levels of service. He therefore concludes that in a slow growth churning market it is simply too risky not to choose the excess capacity route, also described as having a capacity buffer.
This brings us to the crux of the capacity dilemma. Do we risk losing key customers due to longer wait times because we opted for too little capacity? Or do we choose to go with excess capacity which could impede profits but would ensure customer satisfaction. Mr. Kallage says the solution can be found in the difference between realizable and absolute capacity and the utilization of practical lean methodologies to reduce this difference.
Now there could be a myriad of factors for why a company is operating at a level considerably beneath their absolute capacity potential, but listed below are the key culprits Mr. Kallage identified in the article.
BlogPostList












In order to combat these factors and improve efficiency Mr. Kallage recommends employing lean practices such as; ‘machine uptime monitoring, 5S and the visual workplace and any other practices that increase machine uptime, scheduling discipline, cross-training and information standardization’
If a company can adopt strategies to improve the utilization of the capacity they already have (thus decreasing the deficit between realizable and absolute capacity) then they can avoid having to settle for either of the tradeoffs we discussed above. By improving realizable capacity they can achieve the required capacity buffer (critical to reduce risk in the slow growth, churning market) without having to sacrifice profit margins investing in more capacity.
We believe that MultiCam’s products synergise extremely well with the strategy of adopting lean practices. The end goal of these practices is to improve realizable capacity by eliminating activities that result in unnecessary down time. MultiCam CNC Cutting Solutions inherently facilitate these improvements given the flexible and custom nature of their design. Every one of the MultiCam machines is built to order based on each customer’s unique manufacturing requirements.
One of the key culprits listed above is higher than expected machine or people downtime. Unlike some companies that simply assemble machines after outsourcing parts, MultiCam’s In-House Manufacturing ensures quality control through the manufacturing cycle. MultiCam also has more than 70 Local Technology Centers worldwide so our team of experts are set up to be in close proximity if a customer does require parts, maintenance or even programming assistance.
Another listed key culprit that could contribute to unnecessary downtime was employees’ variation in skills performance or attendance. MultiCam’s EZ Control system is the elegant solution to this common, yet serious productivity concern. Incorporating state-of-the-art CNC technology, it features an incredibly easy-to-use human-machine interface that allows companies to utilize their existing workforce. The controls hand-held interface eliminates the need for operators to be G-code literate; meaning any shop employee with a few minutes of training can operate a MultiCam machine. Flexibility is essential and not only is EZ Control a common part on all MultiCam machines; many of our standard parts are interchangeable.

Monday, December 29, 2014

4 Trends in Woodworking for 2015


Both Cabinet Maker FDM and Woodworking Network have come out with their predictions and trends to be on the lookout for in 2015. Here we present a few of these trends that are of particular interest:
Investments in New Technology
The president of the Cabinet Makers Association, Matt Krig, is expecting many woodworking shops to finally make the leap into new technologies, or to replace their aging equipment. “Most CMA members are optimistic,” he says. “A lot of guys bought a lot of things at the show (IWF) and are at the point of making significant investments (in new technology).” Not only are they projected to invest in capital equipment, but woodworkers are predicted to expand their product in knowledge in plastics and other non-wood products. The demand for mixed medium projects, especially in the housing market, is on the rise and shops are adapting.
With the increased popularity of cable networks such as HGTV, many customers are becoming more demanding when it comes to projects. They want shorter project times and lead times. Matt Krig also notes that there could also be a skilled labour shortage as those companies investing in technology require employees that are trained.
Lumber prices
Wood prices on the riseIn an interview with Cabinet Marker FDM, Gene Wengert, a wood technologist and a consultant to the woodworking industry, sees an interesting convergence of trends that will likely lead to higher lumber prices in the coming year. The lumber industry faces a shortage of sawmills and logging crews because many went out of business during the recession. “A third of them are gone,” says Wengert. But then there is another factor that most in the woodworking industry might not think about. “The big one is the tremendous need for railroad ties,” says Wengert.
He explains that the increase in domestic oil production fueled by shale oil development and fracking has increased the need for fuel transport by rail since there are not enough pipelines. That will increase the financial incentive for existing sawmills to saw more lower grades of lumber for railroad ties, which will create a shortage of those grades in the general lumber stream.
“The price will go up in all grades,” says Wengert. “We may have a 50 percent increase. We have to learn to be more efficient then we are now so we create less waste.” Companies will need to put more emphasis on how lumber is cut and graded, as well as confirming they are being supplied with the right grades and footages. “When you check grades and board footage, it’s amazing how often it is off,” he says.
5-axis routing5- Axis Routing
According to the Woodworking Network, the latest developments in advanced CNC machining centres have made 5-axis technology more accessible to the average woodworking shop. With the lines continuing to blur between CNC routers and CNC machining, 5-axis technology on a point-to-point router, for example, can give woodworkers the ability to manufacture high-precision and complex shapes and components. (If you’re interested in 5-axis, might we suggest checking out our 8000 Series Router).
Reshoring
As with many industries, reshoring activities in the woodworking and furniture making industries is estimated to continue. According to the Woodworking Network Almanac, 15% of new US manufacturing jobs between 2010 and 2013 were previously overseas. A stronger economy, the inflation of foreign currency, and a boom to the North American housing market have all contributed to companies choosing to manufacture on this continent, rather than look abroad.

Friday, December 5, 2014

MultiCam Celebrates 25th Anniversary


MultiCam Inc., a leading manufacturing of CNC cutting solutions, is pleased to announce that the end of 2014 will round out its first quarter century of operation. Since opening its doors in December of 1989, MultiCam's products have become an integral part of the manufacturing industry, advancing technology and value into systems that are highly productive, easy to use and built to last.

MultiCam Inc., originally Machine Automation Technology, was founded by Ken Koelling who began building complete CNC systems customized to the needs of his customers. His main goal was to ensure that every machine was engineered to perfection, built with passion and remained reliable for the life of the machine. He instilled a value equation into the company that ensured that the products built exceeded the industrial standards of the marketplace, yet remained affordable to small businesses around the globe.

Today, MultiCam has manufactured and installed more than 10,000 machines worldwide transforming Koelling's vision into a globally recognized, industry leader. "We continue to stand behind the goals and principles set forth 25 years ago," said Kelsey Smith, Marketing Director of MultiCam Inc. "Exemplary customer satisfaction, employee fulfillment and corporate citizenship remain the cornerstones of this company. Sustained success in these areas, we believe, will continue to yield long-term benefits for our brand, employees and our partners."

Tuesday, November 18, 2014

The State of Plasma

In the wake of an economic downturn and recovery, plasma - like the manufacturing industry as a whole  -  needs to change and adapt. To find out what particular challenges the industry's facing as it seeks to do so, we talked to Hypertherm's president, Evan Smith.

FAB Shop: What's the state of the plasma industry right now?

Smith: Well, when I think about the plasma market, I tend to think about it as part of the steel fabrication or steel cutting industry more broadly. The wider steel fabrication capital equipment market is generally healthy, but it's mixed by global region and by industry. And now that we're past the Great Recession, and also the immediate recovery, it's kind of a more mixed economic environment for investment and fabrication equipment. The decision makers are still cautious.

We're seeing equipment usage up. There's evidence by consumable demand, but I'd say that with the actual demand for equipment itself, we still see a fair amount of postponement in the industry. Light industrial demand is up, but the investment threshold is also lower.

Out of the three technologies -  plasma, waterjet and laser -  waterjet is probably the strongest right now, but plasma is holding onto its share in the product marketplace.

FAB Shop: What challenges do you see the plasma industry needing to overcome as it moves forward?

Smith: Like with most cutting technologies, there's the skilled workforce shortage. We find a lot of end users operating sub-optimally, so there are the issues of operator training and system optimization. A lot of end users are unaware of technology upgrade opportunities, too.

I think also, for plasma in particular we see automation and material handling being an area of less development. Plasma is by far the most productive and cost-cutting technology available for most high-volume plate cutting applications. But in terms of overall automation, we see that further development needs to be made there.

FAB Shop: What would you say that development will entail?

Smith: Well, naturally, the development focuses on the cutting process itself. So, for example, it would mean making plasma cutting faster, more cost effective, higher quality, more precise and so forth. We also see a lot of development need being in the software, in the control and in the whole upstream and downstream process integration with the actual cutting.

FAB Shop: How else to you see the plasma industry needing to change and adapt over the coming years?

Smith: I think more application focus versus system focus is going to be an important requirement, as well as focusing increasingly on service levels and advisory relationships, which will help customers address the issue that I mentioned earlier, of operating sub-optimally and not being aware of the technology and the upgrade potential. I think we'll also see more flexible in-sourcing and outsourcing among customers, and more emphasis on total lean operations.

In building those customer relationships, I think we'll need to go beyond the equipment or system performance itself and increasingly look at life cycle for the customer, in order to gain an understanding of what they're trying to accomplish in their applications. This way, we'll be able to deliver those particular applications in better and better ways.

I think other fields in the steel fabrication industry are simply more connected and smarter in terms of software and automation development. They're able to address the issues of self-monitoring and self-optimization, and thus also the shortage of skilled workers.

Plasma needs to follow suit. In the near future, I would expect that plasma systems will be more connected, perhaps through the cloud, and more application optimized. Broader application capabilities will allow plasma to enter new spaces that have been previously dominated by other cutting technologies. And following the trend of digital factory, the plasma system itself will provide more information and intelligence into total factory management systems and processes.

Right now, as an example, Hypertherm controllers can monitor certain parameters of system performance and often allow remote connectivity through the Internet. This is how we facilitate the information flows to partners and to Hypertherm in order to allow value added services.

FAB Shop: To summarize, where do you see the plasma industry in five years?

Smith: Well, its a little bit like the last 20 years. Certainly, plasma technology will continue to improve. It will increase in speed and precision, have a better cut quality , be more repeatable and have a lower cost per foot or linear cut, but I think you're also going to see an expanded application space for plasma as we continue to push particular adaptations and optimizations of the technology.

I would expect to see smarter and more connected machinery, as we've discussed -  machines that are self-monitored and more able to operate without human intervention.

We're also pushing greener technology, and we think the industry and equipment will become cleaner and greener in terms of its footprint and its impact on the environment.

I think we'll see systems -  as we've talked about - with increasingly more sophisticated software and and control technology. The plasma system itself will become more integrated for particular application, and we'll have more embedded process intelligence. And as process intelligence evolves, we'll probably see self-teaching or self-learning systems.

FAB Shop: Thank you.

For more information on MultiCam's lineup of versatile CNC  Plasma Cutting Machines visit www.multicam.com/plasmas.html

Article from FAB Shop Magazine.



Friday, November 7, 2014

Spindle, Toolholder Hygiene Checklist

Cleaning the toolholder
Article by Nicholas J. Korfias, found in Shop Metal Tech Magazine.

8 Tips to maintain toolholder-machine spindle interface accuracy

A minute chip floating in coolant swarf left to dry on a toolholder taper can become a serous interference at the machine tool spindle-toolholder interface. It can go undetected, causing slightly increased cutter runout(TIR) and diminished tool performance at low spindle speeds. At higher spindle speeds, the negative effects are magnified and can result in scrapped parts, catastrophic failure and a possible accident.
A contamination-free toolholder and machine tool spindle interface ensures toolholders properly seat at full taper contact and are pulled into the spindle taper at maximum force. With holders held and positioned accurately, a machine’s full power and tolerance capabilities can effectively and safely transfer to cutting tools, while runout and vibration are reduced for superior part surface finish quality.
The following are eight simple tips for maintaining toolholder-machine spindle interface accuracy and integrity.
1. Shops should clean and inspect toolholders and spindles after every job. Toolholders should be completely disassembled and cleaned. Today’s’ synthetic and semi-synthetic coolants can leave surfaces gummy, causing chips and other contaminants to easily adhere to them. Machine spindles should be cleaned and visually inspected before being returned to service. An oil-dissolving cleaner can be used to clean coolant residue from tollholer and spindle surfaces.
2. Spindle cleaning should be done as part of the overall machine breakdown routine that happens after every job.
3. Dust-free cloths or paper towels with light penetrating oil and manual wiping tools work best for cleaning the spindle socket surface. Most manual wiping tools feature helical cleaning blades set at angles matching those of a machine tool’s spindle. Once surfaces are cleaned, they should be sprayed with a  coat of light penetrating oil to prevent rusting.
4. Shops should use a “ForceCheck” device to check their machine spindle’s puling power on a quarterly basis. This practice should be employed as a preventative maintenance procedure, with results recorded and tracked. Any sudden drops in pulling force from one quarter to the next can indicate a potential issue with the spindle system and can provide early detection for preventing catastrophic failure.
5. If possible, a tool crib manager of designated tooling person should manage toolholder maintenance. As jobs are completed and tools are returned to the crib, cutters and holders should be completely disassembled and all components cleaned manually or in an ultrasonic system, then reassembled. Ultrasonic cleaning system quickly and efficiently clean toolholder tapers, collet cavities, holder nuts, collets and all the other smaller sub-assembly holder parts.
6. If toolholder tapers show visual signs of wear, manufacturers suggest running them through an automatic powerbrush wiping system that uses rotating tapered brushes. After doing so, holers should be cleaned in a n ultra sonic cleaning system, wiped clean and sprayed with a coating of light penetrating oil.
7. Once spindles and toolholders have been cleaned, a visual inspection should be made of the surfaces. They should be free of any defects. If serious damage is found in a spindle interface surface, a professional may be needed to re-grind the spindle taper socket. Damaged toolholder or machine spindle surfaces left dirty or unrepaired will, in turn, damage other tool and machine spindle mating surfaces.
8. Once tooling has been cleaned and properly maintained, store it to avoid any re-contamination as it moves from tool crib or tool cart to machine tools. Surface rust can occur while tools are stored, so they should always be sprayed with a coat of light penetrating oil. Shops should only load clean tool holders into machine spindles and automatic tool changing (ATC) systems. Again, dirty or damaged toolholder surfaces can easily transfer imperfections to other toolholders and onto machine spindle surfaces.

If your toolholders or spindles have reached the end of their useful life, visit out store at store.multicam.com or call us 972-929-4070 and order a replacement right away!

Friday, October 31, 2014

This Carpenter's Spirit Lives On Through His Machine


In 1968, a man by the name of Alejandro de la Cruz Saucedo started a small family wood shop in the town of Jesus Maria, Mexico. With only a handmade circular saw and the premise of "Making Furniture with Conviction", Alejandro set out to create incredible works of Rococo style furniture characterized by the superior French craftsmanship of the 18th-century.

For over 45 years now, Mueblera Provenzal has been producing outstanding results in fine furniture and has become a pioneer of the furniture industry in the Municipality of Jesus Maria.

Ever since he first witnessed the amazing abilities of CNC manufacturing, Alejandro made clear his dream of one day adding a CNC Router to his shop, now located in a 60,000 sq. ft. facility in the center of San Antonio de los Horcones in Jesus Maria.

Sadly, Alejandro passed away recently and was unable to see his dream come true by his own eyes. After his death, Alejandro's wife set out to make his dream become a reality and honor his life long commitment to the company, his town and his family.

Last month, with much anticipation, Mueblera Provenzal welcomed their brand new MultiCam 3000 Router to their work shop and paid homage to the man they revered so much.

Check out these pictures from the installation ceremony!

MultiCam 3000 Router
MultiCam 3000 Router Machine

MultiCam 3000 Router Machine







Wednesday, October 22, 2014

How To Optimize the Cut Quality of Your CNC WaterJet With SigmaNEST

Feedrate edge qualities in waterjet cutting
In CNC WaterJet cutting, when we refer to the feedrate, we’re talking about how fast the waterjet moves along the material per minute. The faster the waterjet moves, the more quickly it will cut the material, but with increased taper. The slower the waterjet moves, the slower it will cut, but the edge quality with greatly improve. Optimizing cut quality with operational efficiency is a balancing act between desired cut quality, material type/thickness, and abrasive feedrate.
When a waterjet moves more slowly over a piece, more water and abrasive is able to erode the material, thus increasing the cut quality. However, the more abrasive you use, the higher your operating costs will be. Many operations will average about 0.7lbs/min of abrasive. When it comes to operating costs, the amount of abrasive used in waterjet cutting is the single largest contributor. It is therefore important to ensure that you’re only using the absolute minimum amount of abrasive that you need for your cut.
To do this, think about the type of cut you’re trying to achieve. Do you require a very smooth cut, with perfect edge quality and negligible taper? Or perhaps you require merely a separation cut, where the edge quality isn’t nearly as important. SigmaNEST has a very simple way of choosing the level of cut quality you require for your job. This is an especially handy tool when your part does not require the same level of quality on all sides.
Feedrate control for waterjetMerely click on the cut line in the dashboard and click on the quality tab. This will allow you to choose from 1 (fastest cut speed, separation cut quality) to 5 (slowest cutting speed, smoothest edge). Having greater control over the quality you choose for each edge on your part means that you’re not wasting abrasive (and operating time), when a lower quality cut could do the job just as effectively.
Proper feed rate control for waterjet cutting is just another way that SigmaNEST software helps you not only cut better, but smarter.