Monday, September 19, 2016

Are You Lagging Behind with a Legacy CNC Machine?


What blue-collar CNC machinist doesn’t like getting a decade, maybe two, out of their CNC machine? You’re hard-working, efficient, and value-conscious. And there’s no better feeling in the world than when you get your money’s worth out of anything, including your CNC machine.

But, with how rapidly technology advances, you have to sometimes consider if it might not actually be a good value-based decision to replace your machine before it breaks down. So, let’s say you still have your good ol’ reliable legacy CNC machine, or maybe several of them.

And let’s say they’re all working just fine. You don’t have to sink thousands of dollars into them to repair them. They maintain pretty decent productivity levels.

Why might you change a good thing like this? Here’s some points to consider:

You Can Streamline Work Processes for Greater Automation

Nothing wrong with doing things manually because of the higher degree of control you have. But, you sacrifice productivity because you have to do the work yourself, rather than automating it with help from your CNC machine.

New software lets you integrate directly with personal computers. You can simplify part changeover. 

You can set your machine up so when you scan the barcode for a work order, it automatically selects the program and process sheets.

With new technology, automation of processes is really unlimited.

Multitasking with 5-Axis (or more) CNC Machines Boosts Your Productivity

With just a single machine tool, you can complete many operations. That’s an obvious boost in productivity. But, you can also increase precision too because you don’t have to clamp your part into place. When you set yourself up for multitasking, you can also save yourself valuable floor space you can use for other business purposes.

All these seemingly little improvements can give you quite an edge over the competition. So, if your company seems to be falling behind, and you don’t know why, this could very well be one of your main problems.


Plus, you’ll have happier customers too because you can complete orders faster and with greater degrees of accuracy. You’ll have to decide whether the investment makes sense for your company, but the overall benefits for most companies are clear. 

Monday, September 12, 2016

Is Your CNC Machine Down? Here’s What You Can Do!



It’s your worst nightmare when running your CNC machine. You’re chugging along, happy with your productivity. Maybe even excited because you know you’re going to have something to good to show your boss. And then your machine stops doing anything.

Or, maybe your CNC machine didn’t even start up in the first place. It happens because even the best CNC machinery eventually breaks down. Nothing’s perfect.

So what could be going on? Without being there, we can’t say. But, we can give you some ideas of what to do so you can save time and get back up and running fast:

Set Up a Good Maintenance Schedule in the First Place

Okay, so if your CNC machine has already broke down, this doesn’t do you any good. However, it’s a must if you don’t already have a regular maintenance routine in place because it eliminates most future breakdowns. The best way to do it is to create a baseline of all your alignments and write down all the numbers you have when your CNC machine makes a good part.

You should check your machine frequently afterwards. Base your check on how much you use your machine, whether your shop floor has settled at all, and if your CNC machine’s had a little abuse from an accident or two around your shop.

Don’t Check Your Software First! Do This Instead…

For CNC machinists, checking the software is the natural first urge. Don’t do it! You’ll only drive yourself crazy as you wander around in logistical circles.

In most cases, the real cause of your problem will be your geometric alignments. So check all those first.

Common Causes of CNC Machine Failure

The most common reasons your CNC machine fails are because of two things present in abundant quantities in nearly every CNC machining environment: heat and contaminants. Lubricants, cutting fluids, scrap metal shavings, dirt, oil, and dust can be found everywhere.

Top this off with the fact that most production floors run hot, and you have the perfect recipe for CNC machine failure at some point. Yes, the cabinets are outfitted with AC. But, your AC can get clogged with all those contaminants we talked about before.


Your routine maintenance plan needs to address these issues so you stay up and running efficiently over the long haul. 

Monday, August 8, 2016

CNC Machining’s Best Kept Secret: Parametric Programming



Even experienced CNC machinists aren’t always familiar with parametric programming. And those that do know of it, often don’t know how to use it. Once you understand what it is and how it can improve your CNC machining life, you’ll wonder why you hadn’t taken the time to learn it in the past.

What Is Parametric Programming?

You can easily compare this type of programming to any computer program language. Parametric programming allows you to create custom macros, which as you might guess, are quite useful to many businesses. But as it stands, they’re not even using the custom macros which could boost their productivity noticeably.

Here’s some other situations where parametric programming comes in handy:

 Families of parts

Pretty easy one here. If you cut families of parts repeatedly, you’re going to benefit from custom macros.

General purpose routines: 

Okay, so let’s say you’ve created custom macros for parts families. Well, you do likely also have certain cuts you have to make on a routine basis. You know what they are. And they’re a perfect opportunity for parametric programming.

One benefit for this kind of parametric programming is that programs become shorter and easier to change. If you’d like to learn more, these routines are commonly referred to as “user-created canned cycles.”

Any complex motion you need to make: 

Let’s say you need to cut a taper on a thread. Now, that’s a difficult motion to pull off. Instead of programming that one every time, create a macro to save yourself time. To put it in perspective, parametric programming would only require 50 lines or so of code in G code. Do this on a CAM system, and the exact same process requires hundreds or thousands of commands.

 Any other process that takes time: 

Think about how you use your CNC machinery here. How long does it take you to set it up? What if you need to transfer a program? Consider all the steps you have to implement with your CNC machine, and then replace those repetitive ones with macros.


When it comes to parametric programming, the most common uses you’ll find for it include for families of parts and creating your own canned cycles. Once you get these functions programmed in, you’ll be glad you did because it saves you so much time and improves your productivity. 

Monday, August 1, 2016

Everything You Need to Know to Get Started with Ballscrews



New to CNC machining? You might wonder, like many others, what ballscrews are all about.

What is a ballscrew, and why would you use one anyway?

First, take a look at ballscrew theory. Think of this as your introductory college course to ballscrews. Very simply, ball screws transfer rotational motion into linear motion with next to no friction. They do this at about 90% efficiency. This is far more efficient than any other method that does the same. This greater efficiency also means ballscrews also have a much longer life than other components that perform the same function.

Why would you use a ballscrew?

They’re usually used in situations where you have a lot of lead or need a lot of life. They compare to lead screws, which get used for the same purpose, but they’re used in smaller, lighter duty applications. Lead screws also have more customizability, as you can change the leads, sizes, and their nut configurations quickly and with ease.

How do Ballscrews Work?

They’re pretty simple in nature. The threads on a ballscrew allow a hardened steel ball to transfer rotational motion from a ball nut into linear motion along the shaft. Inside of the ball nut, there’s grooves, and these grooves fit with those on the shaft, allowing the multiple balls to travel along.

Ballscrews also have a high degree of accuracy. They can easily be accurate to 1/10000th of an inch.

Comparing 2 Types of Ballscrews

When you look to buy ballscrews, you’ll run into these common types:

Ground ballscrews
Rolled ballscrews

Ground ballscrews are made when abrasive wheels cut the channels the ball moves through. While they carry a higher price, they do have high tolerances and exceptional accuracy. They also tend to operate much more quietly than rolled ballscrews.

Speaking of rolled ballscrews, their main benefit over ground ballscrews is their cheaper cost. In fact, they can easily cost 15-20x less than their ground counterparts. However, you will sacrifice accuracy. Rolled ballscrews can be found with accuracies similar to that of ground ones. But, they also then carry the same price.

In nearly every case, ground ballscrews work out better than rolled. So when deciding which to use for your CNC machine, the question usually comes down to the accuracy you need and the price you’re willing to pay for it.


Hope that helps

Thursday, July 14, 2016

CNC Machine Modes of Operation

http://www.multicam.com/products/cnc-routers/


All right. More CNC machine basics here. Today, we’re discussing the various modes of operation your CNC machine can use.

Let’s get right to it:

Manual Mode

Note that this differs from Manual Data Input (MDI) mode. In manual mode, your CNC machine acts like a standard machine. You can operate it just like you would any other machine that doesn’t use programming. You can push buttons, turn wheels, and turn switches on or off.

The difference between manual mode and manual data input mode is that with MDI, you can do certain things that you can’t in manual mode. More on that in a second.

Manual Data Input Mode (Also Called MDI or MDA Mode)

In this mode, you can do some programming and data entry. However, everything you enter will only be done once. If you need all the functions done again, you’ll have to program them again.
The advantage of this mode is that you can do manual operations that simply cannot be done in manual mode. Some CNC machines, for example, don’t have manual controls to change the spindle speed.

 Single Block Mode

Each CNC program is made of blocks. They may be numbered something like N20, N30, and N40. When you enter this mode, just a single block of code executes. Additionally, this means your CNC machine only stops moving on its access. For example, the machine spindle keeps turning, and coolant continues to flow too.

Edit Mode

Just as it sounds, you can enter programs in your CNC machine’s memory, or you can modify current programs. Programs are usually organized by number, and you can make the program you want active.

You can also insert new info into the program, alter its current info, or delete info from it. Some, but not all, CNC programs allow you to cut, paste, find, and replace data just like you would in word processing software.

Automatic Mode/Program Operation Mode

Again, no surprises here. In this mode, you get to find out how well you did with creating your program. So, take a deep breath, and execute yours. Most CNC machines allow you to see the commands executed as they happen. So, if you notice a mistake, you will be able to easily identify where it is in your program.

Those are your basic modes of operation. Feelin’ ready? Awesome. Time to give your CNC machine a try!


Thursday, July 7, 2016

5 CNC Machining Basics Every Beginner Should Know


“Fail your way forward” is a common saying among entrepreneurs. And it’s the way many of us learn.

Mistakes are okay. But some of the big ones can really cost you. So why not avoid them by reading the tips below, if you’re a beginning CNC machinist:

Knowing How to Program A Sequence of Machining Operations

Let’s start with this obvious one, which is one of the biggest advantages of CNC machines: programming sequences so workpieces can be quickly and efficiently cut. It gets a little tricky though because every CNC machine’s different. So, the real trick may be getting acclimated with the particular machine you’re about to work on.

The basic process for understanding a new CNC machine is to:
  • ·         Learn the most basic components
  • ·         Get comfortable with the various axes
  • ·         Understand any accessories
  • ·         Know how the programming works

Incremental Versus Absolute Programming, And When to Use Them

These are the two types of programming modes for CNC machines. Neither is overtly right or wrong. Most controls on CNC machines can do both.

The difference between the two? Incremental programs use their source location as the preceding point. With absolute programs, the source location is always the same fixed, original point.

Have a Decent Vise

Yes, vises cost some money. But, they’re well worth it. A good one lasts for years. And with CNC machining, there’s nothing more valuable than holding what you’re currently working on in precisely the same place.

Use a Misting Setup if You Don’t Have Flood Coolant

Yes, a misting setup costs some money too. But it’s well worth it for the problems it prevents. Not all CNC machines have flood coolant. You can get a decent misting setup relatively inexpensively if you’re willing to search hard enough.

Be Paranoid about Chip Removal

At the very least, chips cause additional wear on your cutters. You’ll have to replace them sooner than you should. At the very worst, you break your cutter. And that can lead to an inaccurate cut, or pieces you need to cut again.

As you cut, watch for any chip buildup. Adjust your mister’s nozzle until you know exactly how to position it correctly without further adjustments.


If you follow those tips, you’ll be well on your way to making quick and accurate cuts without experiencing many of the problems other beginning CNC machinists run into. 

Tuesday, June 7, 2016

A Quick Introduction to Post Processors



You’ve probably heard of “post processors.” But if you’re like most CNC machine operators, it’s kind of a foggy idea. You realize you know the term, but you’re not quite sure about much else.
Don’t sweat it! We have you covered. Here’s some introductory info to make sure you know:

First, What is a Post Processor?
Your CNC cutting machine needs to know what commands you’re giving it. A post processor is software that translates CAD or CAM data to specific commands your CNC cutting machine can understand. Whatever CAD or CAM system you use, it has a certain point where it produces generic output called a “CL-file.”
This “CL-file” only represents the paths your CNC machine will take when cutting your part. However, these paths are not yet specific to your CNC machine. So, that’s where post processor software comes in and translates this CL-file into specific data your CNC machine can use.
See, not so hard to understand how it works now, is it?

Why Do You Need Post Processor Software?
The final accuracy of your cut and optimal use of your CNC machine depends on your post processor software. Without it, or with poor software, you can end up with longer cycle times, damaged parts, ruined equipment, and injuries to employees. That all translates to wasted time and money at your business too.
That can also mean lower part quality. And that can lead to angry customers who take their business elsewhere.

 A Fair Warning about Post Processing Software!
With this kind of software, there’s a wide range of quality. If you don’t recognize the company making the software, you have a good chance of getting post processing software that only causes you more headaches. Go with a name that’s well-known to prevent problems. And you should take extra caution to follow this guideline if you have complex machining needs.

Example Post Processing Customizations You Might Use
If you have more than a single person doing CNC cutting, you’re going to save serious time and increase your productivity with post processing software. You might use it for probing, custom drill patterns, setting familiar patterns, right angle heads, tracking tool life, documenting your G-Code to add clarity for operators, or to set variable setup options.

Finally, make sure you have an open post processor. Some companies “close” them, which means only a particular authorized party can customize them. That could add quite a bit to your costs if you’re not aware of it ahead of time.

Post processing software can make quite a difference at scale. Consider implementing and customizing it if you haven’t already.